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Some Infinite Product Identities 

By Richard Blecksmith, John Brillhart, and Irving Gerst 

Abstract. In this paper we derive the power series expansions of four infinite products 
of the form 

1I (1- Xn) 7 (1 + Xn), 

nES1 nES2 

where the index sets Si and S2 are specified with respect to a modulus (Theorems 1, 
3, and 4). We also establish a useful formula for expanding the product of two Jacobi 
triple products (Theorem 2). Finally, we give nonexistence results for identities of two 
forms. 

1. Introduction. During a computer investigation of products of the form 
00 

II (1 - x) (mod 2), 
n=1 

n-rl I.. rt 
(mod m) 

we found several products with interesting modulo 2 power series expansions. For 
example, the expansion 

00 00 

fi (1 -_Xn) Z(xn(n+1) + X5n(n+l)+l ) (mod 2) 
n=1 n=0 

n%5 (mod 10) 

is distinctive in that the exponents on the right are quadratic polynomials with 
different leading coefficients. While attempting to prove these congruences, one of 
us (IG) discovered with considerable surprise that some of the congruences, such 
as the one above, are actually equations when the plus and minus signs are chosen 
properly on the two sides. Four such equations with only minus signs in the factors 
on the left were proved in [3, Theorems 1 and 2] using standard, single-variable 
identities derived from the familiar triple and quintuple products. (See (9) and 
(20) below.) 

In the present paper we establish four more equations, but this time with both 
plus and minus signs in their products (see [4]). For example, the identity 

00 00 00 

J7 (1- xn) J7 (1 + xn) = E(Xn(n+l) + X5n(n+l)+l 

n=1 n=1 n=O 
n=0,+3 n=-1,+2,+4 
(mod 10) (mod 10) 

is the equation standing behind the congruence above. (See Theorem 4.) We 
note that this equation, as well as (26), (32), and (33), have a partition theory 
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interpretation as in [8, Chapter 19]. The proofs we give here employ several classical 
results ((8), (9), (18), (20)), as well as forms of the quintuple product identity in 
which both plus and minus signs occur ((21), (23)). We also develop an expansion 
formula for the product of two Jacobi triple products (Theorem 2). This interesting 
result allows us to prove the identities of this paper at quite an elementary level. 

2. Preliminaries. We begin with the Jacobi triple product [8, p. 283] 

00 00 

(1) 7J (1- X2n)(1 + X2n-z)(1 + X2n-Z 1) = EX 2z . 

n=1 -00 

Replacing (x, z) by (xk, (-1)ExizP), E = 0 or 1, gives 
00 

Te(k Ip) cef Jcl (1 - X2kn)(1 + (-1)EX2kn-k+lzP)(l + (-) X2kn Z) 

(2) n=1 
00 

= Z(_l)Enxkn2 +Inzpn k $ O. 
-00 

Replacing (x, z) by (ixk, (-1)WixlzP), w = 2 or 3, gives 
00 

TS (kX I;ep) - J7(1(-l)nx2kn)(l + (_l)n+wx2kn-k+l zP) 
n=1 

(3) .(1 + ( l)n-1+Wx2kn-k-l z-P) 

00 

Z(-1) n(n+1) +wn kn2+1n Pn 

-00 

Except for Section 2, we will be dealing with single-variable T-functions with p = 0: 

Te(k, 1) 11 (1 _ X2kn)(l + (- l)e2kn-k+l)(l + (-l)eX2kn-k-1 

(4) n=1 
00 

= E(_1)nxkn2+ln E = 0 or 1, 
-00 

and 
00 

Tw(kl) L-f Z(1 (-1)nX2kn)(l + (l1)n+wX2kn-k+l 
n=1 

(5) (1 + (_ l)n-1+wx2kn-k-i 

Z(-1) n(n?1) +w>nxkn2+In W =2 or 3. 
-00 

(We only use T,, (k, 1) in Section 6.) Our use of (4) in the sequel will require that 
the exponents in the products there (and therefore the series) be integers. This 
implies that 2k E Z - {0}, 21, k -I E Z. In addition, if the exponents are to 
be positive, then it is necessary (taking n = ?1) that 2k > 0, k + I > 0, and 
k - I > 0. These conditions imply that III < k, while thi5s latter condition is also 
clearly sufficient for positivity. (These restrictions on the parameters k, I will be 
assumed as required without necessarily restating them each time.) Note in this 
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case that the exponents in the three factors will run respectively through all the 
positive integers in the residue classes 0, -k + 1, k - I modulo 2k. 

In this paper we are primarily concerned with power series expansions of infinite 
products of the form HIlns (1 ? xv), where the index set S consists of the members 
of certain residue classes with respect to a modulus m. For this purpose, we have 
come to use the following simplified notation: 

00 

(6) (ri, ,rt)m = 17 (1- n) 
n=1 

n-r1,-**,rt (mod m) 

and 
00 

(7) [rlX rt]M = H (1 + Xn). 
n=1 

n-r1. I * *rt (modm) 

where m E Z+ and the ri are residues modulo m. (When an ri is repeated in the 
symbol s times, the corresponding factor is multiplied into the product s times.) 
Accordingly, in this notation (6) and (7) yield for IIl < k the formulas 

00 

(9) To(k, 1) = (0)2k[+(k-1))2k = ZlXkn2+in 
-00 

00 

(9) Tl (k,I) = (O. (k-1))2 =1:(_l)nxkn 2+ln 
-00 

00 

(10) T2 (k, 1) =(O. ? (k + 1)) 4k [? (k -1), 2k] 4k = 1:(_l)n(n+l )/2Xkn2 +In 

-00 

and 
00 

(11) T3(k, 1) = (0, ?(k - 1))4k[+(k + 1), 2k]4k = Z(_l)n(n+3)/2xkn2+ln. 
-00 

Two classical formulas which we shall use (with xk replacing x), due to Euler and 
Gauss, respectively [8, p. 282], may be written in our notation as 

I'9 
kA 

00 

(12) T1 (3, , ) = (0)k = Z(_l)nXn(3n+l)k/2 
" / ~~~-00 

and 

1T 1k k\ (02k 00 

(13) 2 ? 2 2! (k)2k 0 E n(n+l)k/2 

It also follows from the product in (4) that 

(14) Te(k, 1) = Te(k, 1) 

and 

(15) Ti (k, rk) = 0, r odd, 

since 

(-r-1)/2 00 

Ti (k, rk)= a (l)n(xk)n2+rn + E (_l)n(Xk)n2+rn 
-00 (-r+1)/2 
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and replacing n by -n - r in the first sum gives the negative of the second sum. 
In particular, 

(16) T1 (k,+ k) = 0. 

We will also need the identity 

(17) To(k,l) - T1(k, 1) = 2k-lTo(4k, 4k -21), 

which is proved by splitting the index values in the sums into even and odd parts. 
We derive 

(18) [0]k(k)2k = 1, 

from the familiar Euler formula [0] 1(1)2 = 1 by replacing x by xk. Finally, we 
obtain four useful single-variable expansions from the familiar quintuple product 
formula [5] 

00 

| (17 X,)(1- n1 _ X2n- z2) 

(19) 
n-1 

- ~ X(3n2+n)/2(z3n -3n-1 

-00 

by replacing (x, z) by (xm, x-k), (-Xm, xk), (Xm, x-k), and (-Xm, x-k), where 
0 < 2k < m: 

Q(m, k) d=f (0, ?k, ?(m-2k), ?(m-k), m)2m 

(20) = Xm(3n +n)/2 (X-3kn _ x3kn+k) 

-00 

Q, (m, k) d=f (0, ?k)2m[(m - 2k), +(m - k), m]2m 

(21) 00 
= Z(1)(3n2 +n)/2Xm(3n2 +n)/2(X-3kn _ X3kn+k 

-00 

Q2(m, k) d (0, ?(m - 2k), m)2m[?k, ?(m -k)]2m 

(22) = (0, ? (m - 2k), m) 2m [?k]m 
(22) ~~~~~~00 

- Z (_ l)nXm(3n2+n)/2(X-3kn + x3kn+k) 
-00 

def 
Q3(m, k) d (0, ?(m-k))2m[?k, +(m-2k), m]2m 

(23) 00 
22 = E(_l)(3n2-n)/2Xm(3n2 +n)/2(X-3kn + X3kn+k 

-00 

It immediately follows that 

(24) Q(m,k) = To ( Ij 2'23k) -xkTO (3m,_+3k) 

and 

(25) Q2(m, k) = T1 (3mI m 3k) + xkT1 (3m +3k). 
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3. The First Identity. 

THEOREM 1. There holds 

(26) 11 (1- x') 17 (1 + xn) = (x2n(n+l) + X6n(n+l)+ 
n=1 n=1 n=o 

n=o,+5,+7 n=+ 1,+4,6 
(mod 24) (mod 12) 

Proof. Equation (26) can be rewritten as 

[0 12 (0)12 (+5)12 [+1, ?4,16]12 = (0)8 
+ x 

(0)24 

(4)8 (12)24 

by (13), or 

[0] 12Q3 (6, 1) = (0)8 [0]4 + x (12)24 

by (23) and (18). But [0]12(12)24 = 1 by (18), so if we multiply the above equation 
by (12)24 we obtain 

Q3 (6, 1) = (0)8 (12)24 [0]4 + x(0)24. 

Now 

(0)8(12)24[014 = (0)16(8)16(12)24[018[418 = (0)16(12)24[4,12,20124 (by (18)) 
= (0 16,32, 24)48 [4, 20124 = (0, ?16, 24)48 [+4, +20148 = Q2 (24, 4). 

We must therefore show that 

(27) Q3(6, 1) = Q2(24, 4) + x(0)24. 

From (23) we have 
00 

Q3(6, 1) = (-1)(3n 2-n)/2(x(3n)2 + X(3n+1)2 
-00 

00 

= Z(X(12n)2 + X(12n+ 1)2 _ x(12n+3)2 - x(12n+4)2 _ x(12n+6)2 

-00 

- x (12n+7)2 + x(12n+9)2 + X(12n+ 10)2) 

00 

= Z(X(12n)2 + X(12n+ 1)2 + x(12n+2)2 _ x(12n+6)2 _ x(12n+7)2 

-00 

- x(12n+8)2) 

00 00 

= Z(_l)n(X(6n)2 + X(6n+2)2 ) + (-l)nX(6n+1)2 

-00 -00 

= Q2(24, 4) + x(0)24, 

by (22) and (12). 1 
Remark. Replacing x by -x in Theorem 1 gives the identity 

00 00 00 

J7 (1- Xn) J7 (1 + Xn) = Z(X2n(n+l) _ X6n(n+-)+l 

n= 1 n= 1 n=0 
n-0,+1,+11 n=+4,+5,6 

(mod 24) (mod 12) 

4. An Expansion Formula. We now establish a useful expansion formula 
for the product of two general T-functions defined in (2). The proof of this result 
generalizes a technique of Carlitz and Subbarao [5]. 
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THEOREM 2. Let Ei, ?2 E {0O1}, k1, I1,pi, k2,12, P2 E Z and m E Z+. If a and 
b are integers satisfying the separability condition* 

(28) k1b = k2a(m - ab), 

then 

Tgl (ki, 11; pl )TIE2 (k2, 12; P2) 

(29) = Z(-1)E2rXk2r2+l2rZP2rT61 (K1, Li (r); P)T62 (K2, L2(r); P2), 

rER 

where 

K1 = k1 + k2a2, Ll(r) = 11 - 12a - 2k2ar, Pi = P1 - P2a, 

K2 = k2m(m-ab), L2(r) = (2k2r + 12)(m-ab) + 11b, P2 = plb + p2(m-ab), 

(30) 6 = if E 1-E2a is even, 
1 if E -E2a is odd, 

(31) 62={ O if E1b + E2(m - ab) is even, 

1 if Elb + E2 (m-ab) is odd, 

and R is a complete residue system (mod m). 

Proof. Let 

S = T1 (k 11; PO)TE2 (k2, 12; P2) 

= Z(_l)eliXk1i2+11izpli Z(- )E2iXk2 j2+12jZP2i. 

The change of index j = n- ai, which sets up a 1-1 correspondence between {(i, j) } 
and {(i,n)}, gives 

S = (-l)(El-E2a)iX(kl+k2a2)i2+(11-12a)iz(p1-P2a)i 

E (_l)E2nxk2n2+(12-2k2ai)nZP2n 

n 

For each r E R, let Sr denote the subseries obtained from S as n runs through the 
set of values congruent to r modulo m, so that 

S = Z Sr. 
rER 

To determine Sr, put n = sm + r, where s is a new summation index, obtaining 

Sr = (_l)E2rck2r2+12rzP2r Z(1)(El-E2a)i%(kl+k2a2)i2+(11 -12a-2k2ar)iZ(Pl -P2a)i 

Z (_l)e2msxk2m2s2+(2k2mr+l2m-2k2ami)8ZP2ms 

*This condition assures that a certain doubly indexed sum in the proof will factor into a 
product of two singly indexed sums. 
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Making a last change of index i = t + bs and setting d = m - ab, we obtain 

Sr = (l1)62rXk2r +l21ZP2r 

. Z(.l)(elb+62d)sx(kib2+k2d2)s2+((2k2r+12)d+llb)sZ(plb+P2d)s 

S 
. (-1)(61-62a)tx(kl+k2a2 )t2+(11-12a-2k2ar)t+2(klb-k2ad)stZ(P1 -P2a)t 

t 

Using the separability condition (28), the coefficient of s2 simplifies and the st term 
drops out, giving a sum which separates into the product of two sums. Reversing 
the order of the sums and using (30) and (31) yields the theorem. D 

Remarks. 1. It is worth mentioning that (28) can always be satisfied, e.g., a = kj, 
b = k2, m = kjk2 + 1. If a certain value of m is desired, however, then (28) may 
not be solvable. It can also happen, because of the asymmetry of (28) in a and b, 
that condition (28) may be solvable for some value of m when the factors on the 
left of (29) are taken in one order but not in the other. 

2. The Carlitz and Subbarao proof [5] of the quintuple product formula (19) 
is a special case of Theorem 2: Replacing x by x on the left-hand side of (19) 
and multiplying by J'L1 (1 - X4n) gives T1 (2, 0; 2)T1 (1, 1; 1). Applying Theorem 
2 with k1 = 2, 11 = 0, P1 = 2 and k2 = 12 = P2 = 1, the separability condition is 
satisfied with a = 2, b = 1, and m = 3. Taking R = {0, 1, -1}, we find, after some 
simplification, that 

T1(2, 0; 2)Ti(1, 1; 1) = Ti(6,2)[To(3, 1; 3) -z-'To(3,-1; 3)] 
00 

= (?4 , 3n 2+n z3n _ -3n-1) = (0)4 Ex xf+l(Z~ - 

-00 

Cancelling (0)4 = H00_(1-nn=) and replacing x by x1'2 yields (19). 

3. Formula (29) gives an immediate proof of Theorem 1 in [6] and identity (2) 
in [6], viz., with m = 2, a = b = 1, and R = {0, 1}, we have 

T 2(1, 0; 1) = xr2 ztTo(2,-2r; O)To(2,2r; 2) 
rER 

00 00 00 00 

- Z x2n2 E 2n2 z2n + XZ Ex2n2 +2n x2n2 +2nz2n. 

-00 -00 -00 -00 

5. Three More Identities. 

THEOREM 3. We have 
00 00 00 00 

(32) 171 (1-xn) fi (1-xn) 00 (1+Xn)= +E(l)n(Xn 005n2 

n=1 n=l n=1 n=1 
nEO,?1 n=?12 n=+4 
(mod 10) (mod 40) (mod 20) 

and 
00 00 00 

(1 - Xn) 11 (1-_Xn) I| (1 + Xn) 

n=1 n=1 n=1 
n-0,+3 n=-4 n=+8 

(33) (mod 10) (mod 40) (mod 20) 

00 

= Z(-l)n(X5n21 - xn2 1- 

n=1 
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Proof. First rewrite (32) and (33) as 
00 

Z(_1)n(xn2 + x5n) = 2(0,? 1)lo(?12)4o[+4]2o 
-00 

and 
00 

Z (-l)n(X5n2 _ xn ) = 2x (0, +3) lo (+4)40 [+8120 
-00 

Subtracting and adding these equations gives 

T1(1,0) = (0, +1)1o(+12)40[+4]20 - x(0, 3)lo(+4)40[?8]20, 

Ti(5,0) = (0, 1)1o(+12)40[+4]20 + x(0, ?3)lo(+4)40[?8]20. 

Multiplying these by (0)4 (= T1 (6,2) by (12)) and manipulating the factors on the 
right puts the identities into the form in which we will prove them, namely 

(34) T1 (6,2)T1 (1,0) = T1 (10,2)Q(10,1) - xTi (10,6)Q(10,3), 

(35) T1 (6,2)T1 (5,0) = T1 (10,2)Q(10,1) + xTi (10,6)Q(10,3). 

To prove (34), we use Theorem 2 with Pi = P2 = 0, k1 = 6, 11 = 2, k2 = 1, 12 = 0, 
El = = 1. In this case the choice of parameters a = 2, b = 1, m = 5, satisfies the 
separability condition (28), from which we find 61 = 1, 62 = 0. It is also convenient 
to take R = {0, 1,2,-1, -2}. Then 

T1 (6,2)T1 (1,0) = E(-l)rxr 2T (10,2-4r)To(15,2 + 6r) 
rER 

= T1(10, 2)To(15,2) - xTi (10, -2)To(15,8) + x4Ti(10, -6)To(15,14) 

- xTi (10, 6)To (15, -4) + X4T, (10, 10)To (15, -10) 

= T1(10,2)[To(15,2) - xTo(15,8)] - xTi(10,6)[To(15,4) -x3To(15,14)] 

= T1 (10,2)Q(10, 1) - xT (10, 6)Q(10, 3), 

using (14), (16), and (24). This verifies (34). 
We next establish the equation 

(36) (0)20T1 (5,0) = T1 (5,4)Q2 (20,4) + xTi (5,2)Q2 (20,8). 

(Note that (35) follows directly from (36) by multiplying each term of (36) by 
(+4, +8)20.) To do this, we first replace x by X5 in (34). Since the left-hand sides 
of the resulting equation and (36) are the same, to prove (36) it suffices to show 
their right-hand sides are equal, namely 

(7 T1 (5,4)Q2 (20,4) + xTi (5,2)Q2 (20,8) 
( Ti (50, 10)Q(50,5) -_ X5 T (50,30)Q(50, 15). 

If in the expression Ti (5,4)Q2 (20,4) + xTi (5,2)Q2 (20,8) we expand the two Q2's 
by (25), we obtain 

(38) T1 (30,2)T1 (5,4) + X4Ti (30,22)T1 (5,4) 

+ xTi (30, -14)T1 (5, 2) + x9 T (30, -34)T1 (5, 2). 

(Here the order of the factors in each term is carefully chosen, as are the signs 
in the second components. (Cf. (14).)) We next expand the four T1 . T1 pairs by 
Theorem 2 with P1 = P2 = 0, noting that k1 = 30, k2 = 5, and E1 = E2 = 1 in each 
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pair. In addition, in each of these expansions we take m = 5, R = {0, 1, 2,-1, -2}, 
and a = 3, b = 1 so that (28) is satisfied and 61 = 0, 62 = 1. It is convenient to 
exhibit (29) with these values inserted, namely 

T1 (30, l1)T1 (5,12) 

(39) = Z (-1)rx~r +rT0(75,11 - 312 - 30r)Ti (50, 20r + 11 + 212). 
rER 

Now in (39), if we take (11,12) in turn to be (2,4), (22,4), (-14,2), and (-34,2), we 
get 20 products of the form x'TOT1 of which 16 miraculously cancel when they are 
properly grouped. To see this, we first note that four terms are 0, using (16). If 
the sum of the 16 remaining terms is then separated into 5 subsums Si, 0 < i < 4, 
where a term x'To T1 is placed in Si if n _ i (mod 5), we find that Si = S4 = 0, 
using (14). We also discover that 

S2 = X 2To(75, 50)Ti (50, -30) + x32To(75, -50)T1 (50, 70) = 0, 

because 
00 

x32Ti (50, -70) = x12 Z (_l)nx5on2-70n+20 

(40) 00 

= _x12 L(-l)nx50n2+30n =-x12T1(50,30) (n - + 1). 
-00 

Next, 

S3 = -8To (75, -50)Ti (50, 10) + x33To (75, -100)T1 (50, 10) = 0, 

because 
00 00 

x33To (75, 8 X75n2-100n+25 = X8 75n2+50n - x8T_ (75 50) X 7,-100) = X = L 75 0(7, 0) 

-00 -00 

Finally, 

S0 = To (75, -10)T1 (50, 10) -5To(75,40)Ti (50, 10) + x25To(75, -80)T1 (50,30) 

+ X25To (75, 20)Ti (50, -70). 

But 
00 00 

x25To(75 -80) = x75n2-80n+5 = x20 E x75n2+70n = x20(75 70) 
-00 -00 

and by (40) 

x25T1 (50, -70) = -x5T1 (50,30), 

so 

So = T1(50,10)[To(75,10)-x5T 0(75,40)] 

-x5T (50,30)[To(75,20) -x1T0(75,70)] 

= T1 (50, 10)Q(50, 5) -_x5T1 (50,30)Q(50,15), 

which is the desired right-hand side of (37). 1 
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THEOREM 4. There holds 

(41) fi (1- xn) 1 (1 + xn) = (xn(n+l) + X5n(n+l)+l 
n=1 n=1 n=O 

n=0,+3 n=?1,+2,+4 
(mod 10) (mod 10) 

Proof. The result can also be written 
00 

2(0, +3)lo[?1, +2, +4]lo = Z(xn(n+1) + X5n(n+l)+l 
-00 

Replacing x by x4 and multiplying by x gives 
00 

%:(X(2n+ 1)2 + X5(2n+ 1 )= 2x(0, +12)40[+4, ?8, +16140, 
-00 

the form in which we prove Theorem 4. Now (32) can be rewritten as 
00 

2(0,+ 1)1o(+12)40[+4]20 = E(-l)n(xn2 + X5n2) 

(42) 0 
-00 

= Z(x(2n)2 + X5(2n)2) 
- 

Z(X(2n+1)2 + x5(2n+1)2 

-00 -00 

Replacing x by -x in (42) gives 
00 

2(0)1o(+12)40[+1]lo[?4120o = (x + X5n 

(43) 00-00 

=E(X(2n)2 
+ X5(2n)2 

) 
+ 

X((2n+1)2+ 

X5(2n+1) 

-00 -00 

Subtracting (42) from (43) and using (8), (9), and (17) gives 

00 

Z (x(2n+ 1)2 + X5(2n+ 1)2) 

-00 

= (O) 10 (?12)40 [t1] lo [+4]20 - (0, 1) lo (+12)40 [+4]20 

= (?12)40[+4120{ (0)lo[?1110 - A(0 1)10} 

- (?12)40 [+4]20{To (5, 4) -T1 (5, 4) } 
- (+12)40[+4]202xTo(20, 12) = 2x(O, +12)40[+4, ?8, ?16]40. D 

Remark. Replacing x by -x in Theorem 4 gives the formula 
oo oo 00 

II (1 - Xn) I (1 + xn) = E(xn(n+l) _ x5n(n+1)+l 

n=1 n=1 n=0 
n_0,+1 n-+2,+3,+4 
(mod 10) (mod 10) 

6. Two Nonexistence Results. Since Theorems 1(a) and 3(a) in [3], as well 
as (32) above, have the form 

00 ~~~~~00 
(44) fl (1+ -ynXn) = 1 + 0 (- r(Xn2+ xkn2 

n=l n=l 
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for k = 2, 3, or 5 and certain -n = 0, +c1 for each n > 1, it is natural to ask whether 
there are any other values of k > 1 for which (44) holds. We will answer this 
question for the more general equation 

00o 00 

(45) H 1 (1+ +-n X) = 1 + E(6nXn + Enxkn2 
n=1 n=1 

where -n = 0, +1 and 8n, en = +1 for each n > 1. Using a simple search algorithm, 
which runs quickly on an IBM PC, we discover that (45) can hold only when 
k = 2,3,5, or 9. 

This search algorithm relies on the function DeadendDegree, which attempts to 
factor the series 1 + En>=1 anX (stored as an array (l,.. . ., OaL)) into a product of 

the form on the left-hand side of (45) up to the specified degree L. If no factorization 
is possible, the program returns the degree at which a contradiction is first obtained. 
Otherwise, the value L + 1 is returned. For example, the series 

f (x) = 1-X + X4-X7 + X9 + x16 + X25 _ 928 + X36 

whose exponents are of the form n2 and 7n2, factors uniquely up to degree 29 as 

p(X) = (1 _ X)(1 + X4)(1 + X5)(1 + X6)(1 + X12)(1 + X13)(1 + X14)(1 + X16) 

(1 _ X18)(1 + X24)(1 + X26)(1 + X27)( -X29). 

However, when this product is multiplied out, we find that 

p(x) =1-X + X4 -X7 + X9 + X16 + X25 _ 928 + 2x30 + X3 +* 

The discrepancy of 2 between the coefficients of x30 in p(x) and f (x) guarantees 
that the factorization of the original series f (x) into the form on the left-hand side 
of (45) has reached a dead end at degree 30. DeadendDegree uses an auxiliary array 
,8(X) = 1 + EL= An. 

function DeadEndDegree(L, 1 + E L=l nXn) 
begin 

set ,8(x) = 1 

for n = 1 to L do 

begin 
6n = atn-AOn 

if 16n I > 2 then return (n) 

/3(X) = 43(x)(1 + 6nxn) 

end 
return (L + 1) 

end. 

Given L and a sequence s = {s, . .. , St} 1 < Si < L, the intermediate function 
LargestDegree returns the value 

max DeadendDegree (L, 1 + EiX 
E,=1 or -1i=1 

1<i<t 
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The search algorithm can now be described: 

program Search 

begin 

input (L) 

S = {n2: 1 < n2 < L} 
MaxK = LargestDegree(L, S) 

if MaxK < L then 

for k = 2 to MaxK do 

begin 

T= {kn2: 1 < kn2 <L} 

if LargestDegree(L, S U T) < L then 

print ("No Identity for k= ", k) 

else 

output parameters for those series which factor to 

degree L 

end 

end. 

On execution, with L = 30, Search finds that MaxK = 15. This means that all 
series of the form 1 + Z~?=0 1 x X 2,for any choice of sign 6n = +1, fail to factor into 
the form on the left-hand side of (45) by degree 15. Thus, (45) is impossible for 
k > 16. Of the values of k between 2 and 15 which fail to factor to degree 30 (all 
but k = 2, 3, 5, and 9), the "longest survivor" is the series f(x) displayed above. 

For k = 2,3, and 5, the values of -7n, 6n, and En determined by the search 
program agree up to degree 144 with the coefficients of the known identities or the 
trivial variation of them obtained by replacing x by -x. This suggests that the 
known identities are the only solutions in this case. To prove this, however, would 
require a much more elaborate investigation of the kind used in [1, Chapter 4]. 
Note that Theorems 1(a), 3(a) in [3], and (32) above, along with their companions 
with x -- -x, are the only solutions to (44). 

For k = 9, the values determined by the program for n-, 6n, and En, 1 < n < 144, 
indicated four basic identities, whose proofs rely on the four functions Q(6, 1), 
Qi(6, 1), Q2(6, 1), and Q3(6, 1). The first two give the identities 

Q(6 1) = (0,+ ?14,+ 5,6)12 
00 00 

= Ex3(3n2+n)(x-3n _ X3n+l) = Z(x(3n)2 - x(3n+ 1) 2) 

-00 -00 

-1 00 

= S (X(3n)2 _x(3n+1)2) + 1x + Z(X(3n)2 _ x(3n+1)2) 

n=-oo n=1 

=1+Z(6nxn +x)n ) where 6n ={1 if 3 n 
n=1 
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and the more elaborate 

Qi (6 1) = (O ?1)12 [?4,?5,6]12 
00 

E(-1)(3n 2+n)/2(x(3n)2 - 
X(3n+ 1) 2) 

-00 

00 

=1+Z (6nXn + X92), 
n=1 

1 3( 2 -1 if n 0 (mod3) 

where <E = (-1)(3n2-n)/2 if n 1 (mod3), 

(1) 32+1 if n 2 (mod 3). 

Note in the latter equation that the terms x9n cancel when n is odd and double 
when n is even. Since we can switch the coefficients of X(3n) and X9n when these 
terms cancel, there are infinitely many trivial variations of this identity which satisfy 
(45). The other two basic identities for k = 9 are obtained from the two above by 
replacing x by -x, or equivalently, by using Q2(6, 1) and Q3(6, 1). 

In a similar way we have searched for identities of the form 
00 00 

(46) fl (1 + ayn Xn) = +ZE (tn Xn 2-1 + Enxkn2 )_ 

n=1 n=1 

where tyn = 0, +1 and 6n, En = ?1. (This generalizes Theorems 1(b) and 3(b) in 
[3] and (33) above.) The program in this case is the same as Search, but with 
n2- 1 and kn2 -1 being used in the definitions of S and T. This time we find that 
MaxK = 25 and that all series dead-end by degree 44 except when k = 2,3,4,5, 
and 9. As before, for k = 2, 3, and 5, the values of 7n-, &n, and en suggest the known 
identities are the only ones. For k = 4, there are four basic identities, stemming 
from the four functions To(16,8), T1(16, 18), T2(16,8), and T3(16,8). The first is 

00 

To(16,8) = (0)32[?8]32 =E X(4n+1)2_1 

-00 

E X(2n- 1)2_1 = Z(xn2-1 - X4n21 

n=1 n=1 

For the other 3 identities, we use (9), (10), and (11) to obtain 
00 

T, (16,8) = (0, +8)32 = 1 + E (_l)n(n+l)/2X(2n- 1)2_1 

n=1 
00 

T2(16,8) = (0, ?24)64[?8, 32]64 = 1 + (- )(n-l)n(n+l)(n+2)/8X(2n-1) 
n=1 

and 
00 

T3(16 8) = (0, ?8)64[?24, 32]64 = 1 + E(-j)(n-2)n(n+l)(n+3)/8x(2n- 1)2_ 

n=1 

To put these into the form of (46), we need only make sure that the terms X(2n) -1 

and x4n2_1 cancel. 
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For k = 9, there are four basic identities, derived from the four functions To (9, 6), 
T1 (9,6), T2 (9,6) and T3 (9,6). We give only the first here: 

00 

To(9,6) = (0)182[?3]18 = X(3n+1)2_1 

-00 

00 00 

1+ Z(X(3n+1)2_1 + X(3n-1)2-1) = (xn 21 - -1). 

n=1 n=1 

The other three identities are obtained in a straightforward manner, similar to that 
for k = 4. 
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